Patient Risk Stratification with Time-Varying Parameters: A Multitask Learning Approach
نویسندگان
چکیده
The proliferation of electronic health records (EHRs) frames opportunities for using machine learning to build models that help healthcare providers improve patient outcomes. However, building useful risk stratification models presents many technical challenges including the large number of factors (both intrinsic and extrinsic) influencing a patient’s risk of an adverse outcome and the inherent evolution of that risk over time. We address these challenges in the context of learning a risk stratification model for predicting which patients are at risk of acquiring a Clostridium difficile infection (CDI). We take a novel data-centric approach, leveraging the contents of EHRs from nearly 50,000 hospital admissions. We show how, by adapting techniques from multitask learning, we can learn models for patient risk stratification with unprecedented classification performance. Our model, based on thousands of variables, both time-varying and time-invariant, changes over the course of a patient admission. Applied to a held out set of approximately 25,000 patient admissions, we achieve an area under the receiver operating characteristic curve of 0.81 (95% CI 0.78-0.84). The model has been integrated into the health record system at a large hospital in the US, and can be used to produce daily risk estimates for each inpatient. While more complex than traditional risk stratification methods, the widespread development and use of such data-driven models could ultimately enable cost-effective, targeted prevention strategies that lead to better patient outcomes.
منابع مشابه
Learning to prevent healthcare-associated infections: leveraging data across time and space to improve local predictions
The proliferation of electronic medical records holds out the promise of using machine learning and data mining to build models that will help healthcare providers improve patient outcomes. However, building useful models from these datasets presents many technical problems. Among the challenges are the large number of factors (both intrinsic and extrinsic) influencing a patient's risk of an ad...
متن کاملExploiting hierarchical and temporal information in building predictive models from EHR data
Clinical predictive modeling has the potential to revolutionize healthcare by allowing caregivers to allocate resources effectively, resulting not only in lower costs but also in better patient outcomes. Electronic health records (EHR), which contain large volumes of detailed patient information, are a great resource for learning accurate predictive models using advanced machine learning and da...
متن کاملOn Multiplicative Multitask Feature Learning
We investigate a general framework of multiplicative multitask feature learning which decomposes each task’s model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods have been proposed as special cases of our framework. We study the theoretical properties of this framework when dif...
متن کاملVarying-coefficient models with isotropic Gaussian process priors
We study learning problems in which the conditional distribution of the output given the input varies as a function of additional task variables. In varying-coefficient models with Gaussian process priors, a Gaussian process generates the functional relationship between the task variables and the parameters of this conditional. Varying-coefficient models subsume multitask models—such as hierarc...
متن کاملMultiplicative Multitask Feature Learning
We investigate a general framework of multiplicative multitask feature learning which decomposes individual task's model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods can be proved to be special cases of our framework. We study the theoretical properties of this framework when...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 17 شماره
صفحات -
تاریخ انتشار 2016